H∞ Control for Singularly Perturbed Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

نویسندگان

  • Young-Joong Kim
  • Myo-Taeg Lim
چکیده

This paper presents a new algorithm for the closed-loop H∞ composite control of singularly perturbed bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation (SGA). The singularly perturbed bilinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale via singular perturbation theory, and then two H∞ control laws are obtained for each subsystem. H∞ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for bilinear systems. In order to overcome the difficulties inherent in the H∞ control problem, the suitable robust H∞ feedback control law can be constructed in term of the approximated solution to a Hamilton-Jacobi-Isaac equation using SGA. The composite control law consists of H∞ control laws for each subsystem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Control for Singularly Perturbed Bilinear Systems with Successive Galerkin Approximation

This paper presents the closed-loop composite control of singularly perturbed bilinear systems with a quadratic performance criterion, using successive Galerkin approximation(SGA). The singularly perturbed bilinear system is decomposed into two subsystems of a slow-time and fast-time scale by the singular perturbation theory, and we obtain feedback control laws from each subsystem using SGA. We...

متن کامل

Parallel Robust H∞ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

Abstract: This paper presents a new algorithm for the closed-loop H∞ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation (SGA). By using weak coupling theory, the robust H∞ control can be obtained from two reduced-order robust H∞ control problems in parallel. The H∞ control theory gu...

متن کامل

H∞ Control for a Class of Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

Abstract: This paper presents a new algorithm for the closed-loop H∞ control of a class of singularly perturbed nonlinear systems with an exogenous disturbance, using the successive Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of singular perturbation. Two ...

متن کامل

Finite time near-optimal control for the singularly perturbed bilinear systems using successive approximation method

A near-optimal control with a quadratic performance index for singularly perturbed bilinear systems is considered. The proposed algorithm decomposes the full order system into the slow and fast subsystems, and optimal control laws for the corresponding subsystems are obtained by using the successive approximation of a sequence of Lyapunov equations. On the basis of composition we obtain the glo...

متن کامل

On Convergence of the Exponentially Fitted Finite Volume Method with an Anisotropic Mesh Refinement for a Singularly Perturbed Convection-Diffusion Equation

This paper presents a convergence analysis for the exponentially fitted finite volume method in 2 dimensions applied to a linear singularly perturbed convection-diffusion equation with exponential boundary layers. The method is formulated as a non-conforming Petrov-Galerkin finite element element method with an exponentially fitted trial space and a piecewise constant test space. The correspond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008